

Model

• Candidate (C) is $\omega \in \{N(\text{ot guilty}), G(\text{uilty})\}$ • $\Pr(\omega = N) = p_0^N$, C knows ω .

Investigator (I)

- I has access to Poisson signal structure σ .
 - If $\omega = N$, σ returns σ_N at each instance of time.
 - If $\omega = G$, σ returns σ_G with probability $\lambda(k)dt$ and σ_N with probability $1 - \lambda(k) dt$.
- *I* decides in each *t* whether to irreversibly end the investigation.
 - Investigation must end by election at time T^E .
 - Observing σ_G at time t stops investigation.
 - Investigation has instantaneous cost *cdt*.
- I reports g if σ_G arrived, n o.w.
- I gets $\Delta^I > 0$ if matched state, 0 o.w.

Candidate (*C*)

- At t=0, C claims to be guilty or not guilty.
- If $\omega = G$ but C claims to be not guilty:
 - At each t, C picks obstruction level $k_t \in [0, \infty)$.
 - σ_G has arrival rate $\lambda(k_t) = \frac{\lambda}{k_t}$ at time t.
 - k_t is unobservable with cost $\beta k_t dt$.
- C receives office benefits B from winning the election and pays a cost f under q.

Median Voter (V)

- Sees results $\{g, n\}$ and votes for C or alt (A).
- If V has belief $p = Pr(\omega = N)$, V's expected utility from voting for C is $V_C - (1-p)\alpha$.
- V's utility for selecting the A is $V_A + \varepsilon$.
- $\varepsilon \sim \Phi(0,1)$ is V's private info.

Perfect Bayesian Equilibria where C's strategy is continuous across time.

Equilibrium Characterization

- Let $q(p) \equiv \Phi(V_C V_A \alpha(1-p))$ be the prob. C wins when V has belief $p = Pr(\omega = N)$.
- p_T^N is I/V's posterior belief after investigation of length $T \le \sigma_G$. Derived w/ Bayes Rule.

Lemma

If I's strategy is to stop investigating at T, the the optimal obstruction strategy for C, $k_t^*(T)$, is:

 $\frac{\lambda \left(B[q(p_T^N) - q(0)] - f\right)\right)}{-\lambda (T - t)}$ $k_t^*(T) =$

• When to Stop Investigating: Let T^U solve the following condition:

 $\Delta^{I} \times (1 - p_{T}^{N}) \times \dot{-}$ Marginal Value of Learning

Dynamic Investigations

Alice Gindin^{*} and Ephraim Shimko[†], *University of Pennsylvania, [†]Princeton University

Motivation

- Accusations of wrongdoing by political candidates often lead to formal investigations.
- Voters react to official investigation findings.
- Investigations hurt candidates via potential legal repercussions and affect on voter opinion \rightarrow incentive to obstruct investigations.
- In the US, most political scandals are released very close to the election or far in advance.

Theorem - Equilibrium Characterization

The unique outcome of a PBE where C plays a continuous strategy is: • I stops investigating at $T^* = \min\{T^U, T^E\}$. His posterior is 0 if σ_G arrived and p_T^N otherwise

- C uses strategy $\{k_t^*(T^*)\}_{t\in[0,T^E]}$.
- V inherits I's posterior and uses it to vote for his preferred option.

The Effect of Obstruction on Voter Information

• Proportion of Guilty Candidates elected increases as obstruction increases.

How Does Penalizing Obstruction Affect Voter Welfare

• Modification to the model:

- If C confesses at t = 0, C pays fine f_1 for wrongdoing and voters penalize them with α_1 .
- If C doesn't confess and is caught, they pay f_1 and additional obstruction fine f_2 . Voters penalize them at $\alpha_1 + \alpha_2$.
- Key trade-off: f_2 will induce some confession so voters start with a better prior \rightarrow improves welfare. More obstruction & less incentive for Ito investigate \rightarrow decreases welfare.
- Welfare depends crucially on whether election is binding.

This Paper: a dynamic model of investigations.

- How does obstruction impact voter information?
- Observation Does penalizing obstruction increase or decrease voter welfare?
- **is** Given obstruction strategies, how does a competitor strategically time accusations?

Proposition

- For low values of p_0^N , for small increases in f_2 : • If the election is binding $(T^* = T^E)$ then
 - voter welfare improves.
- If the election is non-binding $(T^* < T^E)$ then there exists a cutoff $\alpha_2^* > 0$ s.t. for all $\alpha_2 < \alpha_2^*$, voter welfare decreases and for all $\alpha_2 > \alpha_2^*$, voter welfare increases.

Timing of Accusations

• Scandals often released by competitors. • A chooses when to release an accusation wrt the election to minimize q.

• Suppose A may receive a piece of evidence implicating C as guilty with prob $1 - p_S^N$.

C is the Front-Runner

• A releases accusation early in the hopes it will be confirmed.

C is a Long-Shot

Close Elections

• 'Credibility Cutoff' p_S^* below which there are